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Introduction
Smart processing of images and video streams has 
found its way to a wider range of applications in many 
industries. Meanwhile optimal practical application 
includes using photo and video cameras with low 
quality lenses that feature significant distortions, 
and such distortions are to be compensated in the 
image post-processing stage. Such compensation 
requires distortion parameters information. In some 
cases it can be found in the camera specifications, but 
most likely optical system needs to be calibrated to 
determine such parameters.
This paper will examine the problem of compensation 
of radial distortion – an optic system imperfection 
caused by the spherical shape of the camera lens. 
Radial distortion breaks the geometric similarity 
between an object and its image, straight lines on the 
image become curved (except for the lines crossing 
the frame optical center), and the degree of curvature 
increases from the center to the periphery. Images 
obtained by the wide-lens cameras not designed for 
measurement purposes are primarily subjected to 
radial distortion.
The most common camera distortion compensation 
method is pre-calibration when a special calibration 

object is located in the camera coverage area [1, 2]. 
Calibration objects can include periodic structures 
[1] and random texture [2] with specific statistical 
properties [2]. Characteristics of such object must be 
known in advance.
Methods that do not require a special calibration 
object are also applied, but they use several recorded 
images of the same scene. Such methods are based 
on the priori information about camera moves or the 
scene geometry and achieve calibration factoring in 
the epipolar geometry limitations [3, 4].
But in many real life situations such methods are 
not applicable since the required images cannot 
be obtained from the camera. This happens when 
only a scene image is available but the information 
on the camera used is not. In such case distortion 
parameters may be estimated based on the image 
analysis. Such analytical method of correcting the 
geometric distortions is called automatic (or blind) 
calibration. These methods include image analysis 
in the frequency domain [5], image structure 
research [6] and others. But the most common 
methods are based on the assumption that a typical 
scene included a large number of straight lines that 
remain straight at central projection but become 
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curved due to radial distortion. Such assumption is 
characteristic for many practical tasks, e.g. visual 
navigation of aircraft [7-9]. Papers [10-12] propose 
to perform test compensations of radial distortion 
with various parameter assumptions and evaluate 
the line curvature at the reconstructed images via 
Hough image calculation. Paper [13] proposes 
similar approach but histogram of oriented gradients 
is calculated instead of the Hough image. Authors of 
[14] do not perform such reconstruction but detect 
the lines and approximate extracted curves with circle 
arcs and subsequently calculate the radial distortion 
parameters.
This work presents further development of algorithm 
[12] based on fast Hough transform (FHT) [15, 16].

1. Radial Distortion Compensation 
Algorithm

Like its predecessor the proposed method performs 
test compensations of radial distortions within 
various distortion parameters assumptions and then 
uses the FHT to evaluate the corrected image quality. 
Factoring the curve line element changes into radial 
distortion correction ensured higher algorithm 
accuracy and permitted to shift to three-parameter 
model of radial distortion.

1.1. Distortion Model
Assume that the lens system optical axis crosses 
the image in its geometric center. Locate the origin 
of coordinates in the center and direct x and y axes 
to the right and down accordingly. Use the classic 
Brown modes [17] as the distortion mathematical 
model. In this model the coordinates on the radially 
distorted image are expressed via known coordinates 
on the original (undistorted) image as follows:
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where 2 2=r x y+ , ki = 1…n –distortion parameters, 
(x,  y)  – original location of the dot, (xd,  yd) – dot 
location resulted from the radial distortion.
If rd  <  r, such effect is called barrel distortion, 
otherwise (when rd  >  r) – pincushion distortion. 
Thereat barrel distortion is common for wide-angle 
lenses. Pincushion distortion of long-focus lenses 
is less common for non-professional environment 
(where lens parameters data can be lost) and will not 
be covered in this work.

Value of factors ki depends on the camera focus 
length but this dependence will not be discussed 
in this paper since focal length changes would not 
change the radial distortion itself but rather its 
parameterization.
When the i serial number grows the expansion 
coefficients ki of the real optic systems are falling 
steeply, so we can review only a few first expansion 
terms. We shall limit the review of radial distortion 
parameters up to n = 3.

1.2. Distortion Compensation at the Known 
Parameters

Given a radially distorted image with the known 
distortion parameters. Let us review the task of 
generating an image with compensated radial 
distortion. Let us use formula (1) to transform the 
coordinates (x, y) of each pixel of the generated image 
I. Brightness value in the pixel with coordinates 
(xd, yd) on the distorted image Id will be the target value 
for the pixel on the generated image. Since image Id 
is defined only in the integer-valued coordinate grid 
nodes, the integer values for non-integer xd and yd 
must be obtained by interpolation of function Id.
Note that the image conversion reverse to radial 
distortion required only direct coordinate transform 
(1) without transform inversion.

1.3. Method of Evaluating Radial Inversion 
Parameters

As mentioned above the reconstruction algorithm 
will be based on evaluating the quality of distortion 
correction at all possible values of distortion 
parameters at some grid. Now let us describe 
the quality evaluation method at the known test 
parameters of distortion. For these ends we will need 
to set forward some specific details of using the fast 
Hough transform technique.

1.3.1. Method Idea
Hough transform consists of summing the image 
pixel values along various straight lines crossing 
the image. On several occasions Hough image 
calculation has been suggested for evaluation of 
image lines straightness [10, 11], but was not applied 
due to seeming computational complexity of the 
most common algorithm [18, 19]. This paper applies 
the same approach but suggests to use fast Hough 
transform.
Assume that the original image size is n×m. For fast 
Hough transform predominantly mostly vertical 
straight lines (with deviation angle tangent limited 
by one) of an original image are parametrized by 
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the point of intersection with the image top edge s 
and point of intersection with the image bottom 
edge s+t. Let us call value t, which characterizes the 
straight line deviation angle, a tangenta, t∈[–n,  n]. 
Each pertinently vertical line in the Hough space has 
a corresponding point with coordinates (s,  t). Let 
us determine matrix ,

ver
s tH  of m×(2n–1) size, where 

the value of each element is equal to the sum of 
values of the pixels of the original image along the 
corresponding straight line. Similar parametrization 
is used for predominantly mostly horizontal straight 
lines, the only difference being that the left and right 
image edges are used. The size of resulting matrix of 
sums ,

hor
s tH  is n×(2m–1). A pair of matrixes (Hver, Hhor) 

forms a whole Hough image H.
Assume that the original image includes (possibly 
non-continuous) bright long section on the straight 
line parametrized as (s0,

  t0), and that there are no 
similarly bright and long sections in its vicinity. In this 
case the value of brightness sum along the line (s0,

 t0) 
will be large and this value along the adjacent lines 
will be small. Therefore the Hough image will record 
a sharp peak in the point s0 on line t  =  t0. Assume 
now that the original image includes a bright curved 
section. Since there are many straight lines of similar 
parameters which are tangent to the curved section, 
the sums along these lines will have close values and 
a sweeping “hill” will be visible on the Hough image.
Since the real life scenes usually contain straight 
lines and there is a slim chance that radial distortion 
reconstruction at arbitrary parameters would 
randomly reconstruct some curved line to a straight 
line, then the best radial distortion parameters of 
an image shall be such parameters when the lines 
of reconstructed image are straighter, i.e. its Hough 
image contains sharp peaks rather than blurred 
“hills”.
Now we shall describe a specific algorithm for 
calculating the functional of the distortion correction 
quality assessment based on fast Hough transform.

1.3.2. Correction of Distortion while Maintaining 
Intensity Integral
Assume there is a scene image containing straight 
lines subjected to radial distortion and there are 
distortion parameters. Let us set a problem of 
evaluating whether the image is radially distorted 
at these particular parameters. For these ends select 
the image boundaries by calculating the brightness 
gradient modulus in each dot and then perform trial 
image reconstruction as described in subparagraph 
1.2. Now perform fast Hough transform of the 
reconstructed image. As mentioned above in case 
these radial distortion parameters are correct, 

the bright long sections of straight lines on the 
reconstructed image would show sharp peaks on 
the Hough image; the longer and brighter the line 
sections are, the more visible this peak is against the 
background of flat “hills” that correspond to curved 
boundaries. But note that the radial distortion 
transformation does not maintain length and area, 
so the integral of the section intensity may randomly 
change depending on its location on the image. 
Moreover, if the radial distortion correction turned 
a curve into a straight line while maintain the same 
distance between the section ends, its length will 
be reduced which would cause reduction of the 
integral intensity and the amplitude drop of the 
corresponding peak in the Hough space, and would 
also result in indirect “penalizing” of the correct 
parameters. Therefore to improve the accuracy of the 
line straightness based on the corresponding Hough 
space peaks it is reasonable to develop such method 
of radially distorted image reconstruction that would 
maintain integral image boundary intensity when 
geometry is reconstructed.
Let us assume there is the distorted image Id. Create 
blank (where all values are equal to zero) image I′. 
Assume there is coordinate transformation reverse to 
(1), which allows finding coordinates (x, y) on image 
I′ for each pixel (xd, yd) of the distorted image. Then 
perform the following operation for each pixel of the 
distorted image Id

( , ) = ( , ) ( , )d d dI x y I x y I x y′ ′ + .
The proposed image transformation satisfies the 
stated requirement of maintaining the integral 
intensity along the curves, although it is not 
applicable for visualization since it does not maintain 
the point value. For this reason it is not used in this 
work for trial image reconstruction, but rather a 
standard transformation described in subparagraph 
1.2 is used to create the output image based on the 
identified distortion parameters.
As mentioned above the trial reconstruction that 
maintains integral intensity along the curved lines 
requires calculation of the coordinate transformation 
reverse to (1). But in case (1) is not monotone the 
reverse transformation does not exist. For this 
reason it is reasonable to limit possible values of the 
distortion parameters ki in such a way as to make 
transformation (1) monotone at the section [0,  r

*], 
where r* is such radius when f  (r*) is not less than 
certain predetermined value rcrit. The circumference 
of this radius would be called critical.
If a circle of rext radius circumscribed around an image 
is accepted as critical, the distortion parameters 
limitations are too strict to the effect that heavily 
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distorted images from the test set are not described 
with reasonable accuracy by the polynomial model 
with small number of elements. If the critical 
circumference radius is too small (e.g. it is equal to 
the radius rint of the circle escribed into the circle 
image) the obtained distortion correction parameters 
estimate will be meaningless since the distortions 
of the significant image peripheral areas may be 
arbitrarily large. In our work the critical circle radius 
of rorit  =  0.7×rext. is selected. Meanwhile the image 
aspect ratio is 3:4, which yields rint  =  0.6×rext. For 
other aspect ratios the reasonable critical circle radius 
selection will probably be the value that divides the 
section [rint, rext] in similar proportion.
Note that the distortion parameters impact the global 
image scale, so part of the scene may extend beyond 
the borders of the reconstructed image, which would 
infract the frame integral intensity. Let us introduce 
the notion of fixed circumference. It will designate 
the non-degenerate circle with the radius not 
changed by trial correction of radial distortion. At 
some distortion parameters such circle may be non-
existent. Now at the fixed distortion parameters let 
us introduce additional scaling at the factor of k0. For 
each circle not larger than critical at these distortion 
parameters the k0 coefficient may be selected in such 
a way that the selected circle will be fixed (for scaling 
transformation).
Note that the monotoneness of transform f(k0r) up 
to rcrit would not guarantee preservation of the image 
integral intensity within the critical circle if the latter 
extends beyond the image limits. In order to maintain 
the integral inside the truncated circle the additional 
requirement of f(k0r)≤k0r shall be in force for section 
[rint, rcrit]. Now to ensure integral intensity across the 
whole image it would be sufficient to clear to zero the 
gradient modulus values outside of the critical circle.

1.3.3. Calculating Reverse Coordinate Transform for 
Radial Distortion
The procedure proposed for test reconstruction of 
radially distorted image requires calculation of the 
coordinates transformation reverse to (1). Assume that 
the coordinates (xd, yd) of the distorted image pixel and 
radial distortion parameters are predetermined.
Let us assume 2 2=d d dr x y+  and rewrite equation (1) 
in the following form:

2

=1
= ( ) = (1 )

n
i

d i
i

r f r k r r′ ′+ ∑ .	 (2)

Find scaling transformation with coefficient k0 that 
preserves the critical circle radius:

1
0 ( ) = .crit critk f r r−′ 	 (3)

Taking into account scaling at k0 and ki  =  k0k′i 
replacement for i > 0 the coordinates transformation 
will appear as:

2

=0
= ( ) = ( )
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i
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i
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There is no analytical solution for equation (4) re-
garding r at n > 1, therefore computational solution 
must be sought. Since reverse transformation at 
fixed distortion parameters needs to be computed 
repeatedly (complexity is directly proportional to 
the image area), it would be reasonable to create a 
crude model of reverse transformation and use it in-
stead of computational solution of equation (2) in 
each point. Since the radial distortion transforma-
tion for the lenses under examination turned out to 
be sufficiently smooth, and the points are symmet-
rically offset against the radial distortion center, the 
value of function r = f

 –1(rd) was numerically evaluat-
ed for m of equidistant values of rd at [0, rcrit] section 
and linear interpolation was used to compute r for 
all dots at the input image. m was equal to 300 in the 
numerical experiments shown below.

1.3.4. Angular Image Descriptor
As mentioned above straight lines of the image generate 
sharp peaks on the Hough image, and curved lines generate 
more blurred peaks. In order to remove blurred peaks and 
preserve sharper peaks let us deduct from Hough image 
the same image but smoothed out with Gaussian filter 
along the t axis thus preserving only non-negative values: 

= max(0, ( )* ) ,
= max(0, ( )* ).

ver ver ver
t

hor hor hor
t

P H G H
P H G H

− s
− s
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where Gt(s)– Gaussian filter kernel with root-mean-
square deviation s. In the experiments below s was 
assumed as equal to 5.0 with the image width of 360 
pixels.
Now define vectors Fver of 2n–1 length and Fhor of 
2m–1 length so that each of their elements would 
contain straightness estimate for the set of edges of the 
certain tangenta t. For such estimate let us take value 
dispersion in line t of filtered Hough images ver

tP and 
hor

tP .
Dispersion is used to evaluate the straightness 
because blurred “hills” produce lesser dispersion 
as compared to sharp peaks. The dispersion is also 
growing when the number of peaks increases.
Now take into account the fact that the straight lines 
passing through the image center are not affected 
by any radial distortion and the lines passing closer 
to the center are less distorted than the far lines. As 
far as discretization and other interferences create 
noise on the Hough image peak amplitude it would 
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be reasonable to assign less weight to the peaks that 
correspond to the straight lines located closer to the 
image center. 
Based on the aforesaid the straightness estimate for a 
beam of parallel lines of each tangenta t would appear 
as follows:

2
, ,

2
, ,

= ( ) ,
= ( ) ,
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where Wver and Whor – distance from the straight line (s, 
t) to the image optical center. Let us use the term angle 
descriptor to describe this reduction of Hough images 
Hver and Hhor to vector F = F

ver∪Fhor.

1.3.5. Distortion Correction Evaluation Based on the 
Angular Descriptor
We expect to see peaks from the quasi-parallel edge 
beams on the angular descriptor, besides, their 
straightness affects both peaks amplitude and fall 
velocity. Let us use the signal entropy value as the peak 
strength measure that takes into account both of these 
effects.
Assume F has k levels of values and frequency of level 
k appearance is P(Fk). Then the F signal entropy is 
defined as follows: 

=1
( ) = ( ) log ( ).

K

k k
k

E F P F P F−∑ 	 (8)

This equation was used in this work to evaluate the 
distortion correction quality – the less is E entropy 
value, the stronger are the peaks in the angular 
descriptor. This is expected to be related to the fact 
that the straight lines on the image are less distorted.

1.4. General Description of Blind Compensa-
tion Algorithm

The proposed algorithm uses the n-dimensional space 
exhaustive search of the radial distortion parameters 
(experiments conducted at n=3) within the predetermined 
limits. The experiment included the following steps:
1. Generate an outline image selecting the input image 
boundaries by calculating the brightness gradient 
modulus in each point of the image.
2. Set to zero outline image pixels outside of the critical 
circumference (see p. 1.3.2).
3. Perform the search in the parameters space within the 
predetermined limits. For each parameters set:
1.1.	 Check the distortion transformation limitations 
described in p. 1.3.2 at this set of parameters; in case 

limitations are not satisfied proceed to the next set of 
parameters.
1.2.	 Calculate reverse coordinate transformation 
(p. 1.3.3).
1.3.	 Complete reverse distortion transformation of 
the outline image while preserving the intensity integral 
(p. 1.3.2)
1.4.	 Generate angular descriptor (p. 1.3.4).
1.5.	 Evaluate the distortion correction based on the 
angular descriptor (p. 1.3.5). 
4. Find the parameters set that minimizes the target 
function value (8).
5. Use the identified parameters to obtain output 
image by compensating the radial distortion of the 
input image (p. 1.2).

2. Experimental Verification  
of the Proposed Algorithm Quality

Algorithm was tested on the document images and 
three-dimensional indoors and outdoors scenes 
containing straight lines (Figures  2 a-d). Cameras 
with 6 different lenses were used to photograph 
the images (Table  1). For control purposes the 
algorithm was applied to the images described in 
[12]. Using MATLAB Single Camera Calibration 
software module with Zhang [1] algorithm reference 
radial distortion parameters were obtained for each 
data set, except for the data taken from [12]. A fixed 
transparent overlay with 1 meter side and 10 cm pitch 
staggered pattern.
The experiment objective was quantitative evaluation 
of the distortion parameters definition accuracy for 
various modifications of the proposed algorithm on 
the multitude of test images. Note that using simple 
metrics in the distortion model parameters space is 
not the best option for quantitative evaluation. Firstly 
there is no apparent method to collate the weight of 
equal deviations for different model coefficients. 
Secondly, and more importantly, two polynomials 
with significantly different sets of coefficients may 
have only small difference at the section under our 
examination. For practical reasons the error of any 
distortion compensation algorithm is directly related 
to points coordinates deviations after correcting 
relatively perfect coordinates in the image area. 
Quantitative method of residual distortion strength 
evaluation will be described below, as well as the 
results of the algorithm based on such method.

2.1. Method of Evaluating the Distortion 
Strength and Compensation Correctness

Assume that we know the initial point position 
= ( , )r x y

 before distortion and the observed point 
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a)  b)

c)     d)
    

Fig. 1. Evaluation of the radial distortion compensation: a) grid used,  
b) radial distortion results,  

c) transformation with the same distortion parameters but with optimal scaling used for computing;  
d) distortion compensation with optimal scaling used to compute d

f

Now we can introduce relative evaluation of the 
distortion compensation quality: 

0= 10 [1 ( / ( ))],f fQ d d⋅ − + ε 	 (13)
where 10 – coefficient used to reduce the evaluation 
to the ten point scale, and ε – parameter that governs 

the tolerance of the low distortion reconstruction 
evaluation. Its value may vary depending on the 
reconstruction accuracy requirements. Thus the 
introduced relative assessment permits to obtain 
comparable results at the image sets with significantly 
different distortion levels.

position = ( , )d d dr x y

impacted by certain distortion. 
The coordinates of reconstructed point location are 

1( , ) = ( )dx y f r−′ ′ 

, where f –1 – the estimated function of 
distortion compensation. Let us consider the Euclidean 
norm of reconstructed coordinates deviation in the 
perfect image coordinates:

1
2( , ) = || ( ) ||f dx y r f r−∆ −

 

 	 (9)

We introduce regular rectangular grid N×M 
(Figure  1a) and define the distortion compensation 
quality evaluation as an average deviation norm in the 
grid nodes:

,

, =1

1= ( , ).
N M

f f i j
i j

d x y
NM

∆∑
 	 (10)

As mentioned above the scale notion is hardly 
definable for the distorted images. Besides, the image 
reconstructed from the distorted rectangular image 
(Figure  1 b) would not be rectangular (Figure  1 

d). In practice this requires selection of the scale 
(and generally shift) of the output image rectangle, 
optimal in terms of specific application. In this 
respect overall reconstructed image extension or 
compression shall not affect reconstruction quality 
assessment. For this reason the quality assessment 
is modified as follows:

1
, 2

,

,
, =1

( , ) =|| ( ( )) ||
,1= ( , )min

f p p d
N M

f f p i j
p i j

x y r L f r

d x y
NM

−∆ −

∆∑

 

	 (11)

where Lp – scaling and shifting transformation (in our 
case – only scaling) with parameters p.
Similarly we define the strength degree of the initial 
image distortion d0 as the assessment of reconstruction 
quality without any compensation (Figure 1c): 

0 ( )== | .f f r rd d   	 (12)
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Table  2. Results of radial distortion compensation with different algorithm modifications (10-point scale, see p. 3.1)

№ Algorithm version 
Average quality for the data set used Average 

quality for the 
version

1 2 3 4 5 6

0 Reference: algorithm proposed in [12] 8.4 2.6 8.6 0.8 4.6 2.0 4.50
1 The test reconstruction method was replaced with the 

one described in p. 1.3.2 without scaling; distortion 
model is extended to include two parameters

8.0 5.4 7.9 2.3 1.6 1.9 4.52

2 Scaling added 3.0 6.0 3.0 6.3 2.7 5.75 4.46
3 Distortion correction evaluation functional is replaced with 

the one proposed in p. 1.3.5 without weighing the peaks in 
the Hough image

6.3 6.2 7.8 6.5 7.1 4.0 6.32

4 Weighing added 9.0 7.8 9.0 7.8 7.9 7.75 8.21
5 Distortion model is extended to include three parameters 9.4 8.2 9.6 8.5 8.5 6.5 8.45

Table 1. Characteristics of the data set used

Lens 
number

Number of shots Distortion strength d0

1 10 1.25
2 10 7.12
3 10 3.61
4 10 6.99
5 10 5.15
6 15 6,47

In this work uniform grid of 36×48 nodes and ε = 1.0 
with the image size of 360×480 were used to 
calculate (13).

2.2. Discussion of Experimental Results
The set of experiments were conducted to compare 
results of different variants of the proposed algorithm. 
The reproduced results of the algorithm shown in [12] 
were used as a reference. Each successive algorithm 
modification was cumulatively applied to the previous 
version. In the first experiment the algorithm 
proposed in [12] was upgraded by replacing the radial 
distortion model with the two-parameters model, and 
replacing the test reconstruction radial distortion 
conversion method with the method described in 

p. 1.3.2 except for scaling that preserves the critical 
circumference radius. Such scaling was added in the 
second experiment. The third experiment replaced 
the distortion correction evaluation functional 
described in [12] with the one proposed in p. 1.3.5 
except for assigning different weights to peaks on the 
Hough image depending on the line distance from the 
image center (p. 1.3.4). Such weight assignment was 
added in the fourth experiment. The fifth experiment 
replaced the radial distortion model with the three-
parameters model.
Table 1 shows the specifications of the optical systems 
used to obtain test data. Experiment results are 
presented in Table 2 and on Figure 2e-h.

Conclusion
This work proposes the algorithm of reconstructing a 
radially distorted image based solely on the analysis of 
this image when a priori information about the camera 
parameters is not required. The algorithm was verified 
on real images obtained from the lenses of various 
radial distortion strength and proved to be practically 
applicable. The radial distortion correction accuracy 
significantly exceeded the accuracy of preceding 
algorithm proposed in [12] due, among other things, 
to using distortion model with larger number of 
parameters.

The proposed algorithm is based on minimization 
of the straightness estimation functional of the 
edges constructed over the result of the Hough 
transform of the trial distortion correction image 
for the gradient of the input image. As shown in 
[12] functionals of such type may be nonconvex 
therefore the optimization problem is resolved 
via full search in the radial distortion parameters 
space. Since radial distortion correction based on 
a single image from an unknown source is not the 
problem to be solved for big data flows it does not 
require high speed response so brute force search 
or exhaustive search is justified.
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This work also contains a detailed discussion of key 
algorithm steps and includes the quality evaluation 
of different algorithm versions based on the 
proposed criteria. Quantitative and visual data were 
presented to illustrate that the proposed method 
can successfully handle both scene variability and 
different shooting conditions and distortion levels.
Further plans include acceleration of radial 
distortion parameters search process and adapting 
the proposed algorithm for video processing when 
the information from different frames is used for 
simultaneous optimization of radial distortion 
parameters.
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